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S u m m a r y  

The simulation described in Part I was applied to random step polyaddition of a tri- 
functional monomer and the results were compared with exact solution for an infinite 
system. The gel point conversions, the weight-average degree of polymerization before 
(Pw) and beyond (Pw,so~) the gel point, the sol fraction and the cycle rank were used for 
comparison. The best way for detection of the gel point conversion is the extrapolation 
of the gel fraction, Wg, to Wg = 0. The largest fluctuations are exhibited by Pw and Pw,so]. 
To get results closer to the exact ones, one can repeat several experiments with smaller 
number of units or increase the number of units, the former way being somewhat more 
economical. Typical orders of magnitude used were 10 r monomeric units. 

I n t r o d u c t i o n  

In Part II, the results of testing of the computer program described in Part I [1] are 
described. To be able to compare the results with the exact solution, a simple system, 
random polycondensation of a trifunctional monomer, has been chosen. 

The main objectives of the study are as follows: 

(a) simulation of the weight-average degree of polymerization, Pw, and its value, Pw,soh 
for the sol, weight fraction of gel, Wg, and cycle rank, (, as a function of the number 
of units used in simulation, N; 

(b) investigation of fluctuation of results by repeating the experiment; 

(c) finding the best criterion for determining the critical conversion at the gel point. 

R a n d o m  po lycondensa t ion  of a t r i funct ional  m o n o m e r  

Only irreversible ideal step polyaddition (polycondensation) is considered. The kernel 
(eq. (15) of Part I) 

K I (  b ,  " ' �9 . tk, x, x , . . . )  = kjk k(x, . . )  k(x', . .)  l~ U (1) 

becomes for lj = lk = l; kjk = k; k ( x ,  ...) = k (x ' ,  ...) = 1; aa'  = 1 

Ki(t ,  r )  = k i z' (2) 
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and the equation determining the changes in the concentrations of molecules A(x,1) 
(cf. eq. (9) of Part I, f = 3) reads 

d4 ,l) = (3) 
dt 2 =,=l ~,=a 

As was pointed out in Part I, all finite molecules in an infinite system must have only a 
tree-like structure. For tree-like molecules, a fixed relation between 1 and x holds 

l = x ( f - 2 )  + 2 (4) 

because x - 1 bonds out of all possible f x / 2  bonds are sufficient to connect x molecules. 
The initial conditions for t = 0 are 

co f o r x = l a n d l = 3  
c(x,l) = 0 otherwise (5) 

where ca is the initial monomer concentration. 

C a l c u l a t e d  p a r a m e t e r s  

Typical parameters calculated to test the simulation procedure and the exact solutions 
obtained by the theory of branching processes (cf. e.g. refs. 2 and 3) for an infinite system 
are listed below: 

Weight-average degree of polymerization including (Pw) and excluding (Pw,~oQ the largest 
molecule 
In a simulated (finite) system distinguishable molecules can be numbered and the corre- 
sponding quantities denoted by subscripts i = 1, . . . ,  nwpe. Formulas for Pw and Pw,sol 
then read 

= Z �9 E 5/ v, (61 
i=1 ! i=1 

ntype ~ N i l  ntyp~ Pw,,o] = ~--~.' x ~--~' xi gi (7) 
i=1  i=1 

These formulas differ only in the range of summation: in P~, there are included all 
molecules and in Pw,sol, all but the largest molecule which is expressed by prime at the 
summation sign. Before the gel point, the difference between P~ and Pw,sol decreases to 
zero with increasing system size. After the gel point, contribution to Pw from the largest 
molecule (gel) is prevailing and for infinite systems it diverges. 

The exact solution for infinite system reads: 

Pw = 1 + 3a/(1 - 2a) for a < c~g (S) 

Pw,sol = 1 + 3 ( 1 - c ~ ) / ( 2 a - 1 )  f o r a > a g  (9) 

where gel point conversion ag ---- 0.5. Up  to the gel point Pw,~ol = Pw. 
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Weight fraction of gel, wg 
ntype 

wg = xi,~g.,Ni, arg.,, ~ xiNi (10) 
i=1 

where il~g~t is an identification label of the largest molecule. The exact solution is 

~ = 1 - (1 - ~ + ~ ) ~  = 1 - ( 1 1 )  

where v is the extinction probability; in this case v = @ - ~ ) '  

The cycle rank, ( 
The cycle rank is an important quantity in rubber elasticity theories. By definition, the 
cycle rank is equal to the number of bonds (edges) which must be split in a graph with 
cycles to obtain a spanning tree (a connected graph with tree-like structure). The number 
of bonds in the molecule A(x, l) is ( f x -  I)/2 and the minimum number of bonds to connect 
x units into a tree-like molecule is x - 1 (cf. eq. (4)), hence 

= x ( f  - 2 ) / 2  - t / 2  + 1 ( 1 2 )  

(here f = 3). 
For a perfect network, there exist one-to-one relation between the cycle rank, number 

of network chains (u) and junctions (# = x) in the gel, because for an infinite system 
x - l ~ x  

f - 2  
= u - # =  T u  (13) 

For an imperfect network, the corresponding relation reads 

L - 2  
( e  = Ue - -  # e  - -  2 "e ( 1 4 )  

where (r ue and #e mean the elastically effective cycle rank, the number of elastically 
active chains and elastically active junctions, respectively; fe is the average effective func- 
tionality which is equal to 3 if f = 3. The exact solution for ( related to a monomeric 
unit ((~' = (~/x) read 

1 3  1 ( ~ )  a ( : = 3 a s ( 1 _ v )  ~-c~ 3 ( l - v )  s = ~ c ~  ( l - v )  3 = ~  (15) 

The cycle rank per monomeric unit in the gel 

, , ( 2c~  - 1) 2 ( 1 6 )  
(~g = ('~/Wg = 2 (2c~ - 1) 2 + 3 

Simulat ion resul ts  

Two main tasks were pursued: the determination of the critical conversion and the changes 
of various parameters listed above as a function of conversion of functional groups in 
dependence on the number of monomeric units used in the simulation and on the number 
of repetitions of the experiment. 
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Figure 1: Examples of Pw and Pw,sol evolution for two experiments with N = 106 units. 

Gel point conversion 

Two criteria for the gel point have been examined: 

(1) maximum of the weight-average degree of polymerization of sol, Pw,sob which, in an 
infinite system, diverges at the gel point and falls again, 

(2) the gel fraction, wg, which, in infinite system, is zero at the gel point and Wg > 0 
for a > ag. 

(1) In the infinite system, all molecules contribute to Pw and beyond the gel point the 
infinite structure is excluded from Pw,sol. Before the gel point, Pw,sol and Pw are identical 
because the contribution of the largest molecule (largest here means that its degree of 
polymerization is as large as any finite number) by its weight is negligible compared to 
that of all other molecules. 

In finite systems, Pw defined by eq. (6) increases continuously through the "gel 
point" (in the infinite system it would diverge) and is thus of no use for detection of 
the gel point. On the other hand, the average Pw,~ol, from which the contribution by 
the largest molecule is excluded, passes through a maximum value and decreases again. 
As expected, the maximum Pw,sol is found at conversions higher than the asymptotic as 
given by ag = 1 / ( f  - 1). Figures la,b show the dependence of Pw and Pw,sol for two 
experiments with 106 monomeric units. Figure 2 illustrates similar dependences for the 
indicated number of monomeric units used in simulation. These dependences are averaged 
over several experiments as described in the legend. One can see that with increasing N 
the maximum value of P~.~ol is shifted towards the expected gel point conversion, 1/2, valid 
for an infinite system. In Figure 3, the values of a corresponding to the highest values of 
Pw,soh amax, are plotted against the system size. The fluctuations of experimental values 
and the error bars corresponding to the root-mean-square deviation are also shown. The 
least-square plot of amax vs. N -1/2 for N --o 0o gives a value very close to 1/2. 

It can be concluded that ag can be found with reasonable approximation (with 
deviation of the order of 0.003) for a relatively large system (e.g. 10 z units) or if the mean 
value over several experiments (e.g. with N = 10 s) is taken. 
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Figure 2: Pw and Pw,sol for different sizes 
N (each averaged over several experi- 
ments).  
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Figure 3: Values of a corresponding to 
the highest values of Pw,sol, am~x plotted 
against N -U2. 

Another observation is still to be mentioned. The fluctuation pat tern of several 
experiments for the same system size (106) shown in Fig. 4 does not look fully random as 
one might expect. In all individual experiments, one can see a series of steep and deep 
falls preceded by gradual but  irregular climbs. The explanation of this "regularity" is 
that  the deep fall corresponds to the reaction of the second largest molecules or one of the 
next largest molecules with the largest one. The status of this molecule is then changed 
from a countable molecule to the uncountable largest one, and the average Pw,sol falls. 
When the largest molecule is added (to yield Pw), or when Pw,sol is averaged over several 
experiments, the curves are much more featureless (Figs. 1 and 2). Beyond the gel point, 
such features of single-experiment Pw,sol remain preserved. 

(2) The other possibility to find the gel point conversion is the extrapolation of the 
weight fraction of the largest molecule (gel) to zero. Figures 5a-c show the dependence of 
wg on conversion and system size at different scales of a. With  the exception of N = l0 s 
and the critical region, on a wider scale, the dependences practically copy the curve for 
an infinite system (Fig. 5c) and fluctuations are small. The wg vs. a dependence is not 
linear. However, within a narrower a-range (Fig. 5b), the dependences for N = 106 - 
107 are almost identical down to a = 0.503 and almost linear up to a = 0.515 - 0.520. 
Linear extrapolation gives a s = 0.498 - 0.499. Figure 5a shows that extrapolation of 
dependences for N = 1 - 5 x 107 gives a value of ag = 0.5 :t: 0.0005. 

Thus, the extrapolation of the gel fraction dependence is the best method of ob- 
taining the value of the critical conversion. 

Dependences of Pw, Pw,sol, Wg and ~ on conversion 
It has already been stressed that the Wg vs. a dependence for an infinite system is very 
well simulated by system sizes 106 - 107, and even the 105 system offers a reasonable 
approximation of the infinite system (at these relatively short distances from the gel 
point the experimental determination of wg by extraction is much less accurate). 
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Figure 4: Pw,sol for different experiments using 
different starting numbers of generator with 
N = 106. 

Figure 5a 

Wg 

0.2 

0.1 

0 
0.48 

I I I 

t '  

,J 

0.49 0.5 0.51 0.52 

Figure 5b 

Wg 

i i I 

0.4 

0.2 

0.48 0.5 0.52 0.54 
O/ 

Figure 5c 

Figure 5: The weight fraction of the largest molecule, wg, as a function of a for N = 105 ---, 
106 ---, 107 -- ,  3 x 107 ---, 5 x 107 - -  compared with theoretical dependence (--), with varying 
conversion scales in Figs. 5a, 5b, 5c. 

The agreement of P,~ (before the gel point) and Pw,s o l  (beyond the gel point) is 
somewhat worse partly because of the steepness of the Pw or Pw,=ol vs. a dependences 
near the critical point, in an infinite system. 

The log - log plots of P ,  and Pw,=ol vs. lag - a] (Figs. 6a, b) show that a reasonable 
agreement between the simulated and exact values can be reached for Pw up to about 
2 • 102 - 103 for N changing from 105 to 5 x 107. The Pw,~ol values seem to be lower to 
a farther distance from the gel point than the Pw values. Note that the scaling relation 
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Figure 6: Theoretical and simulation dependences of Pw before and P~,sol beyond the crit- 

ical conversion (ag = 0.5) compared with exponential (scaling) approximation f ag 
21~ - ~1  (line 1) and theory (line 2) for N = 10 s ---, 106 ---, 10 r - -  and 5 x 107 -- .  

log Pw = - log I ~ -  ~gl + log(fag/2)  (line 1) fits the exact dependence log Pw = - log I ~ -  
ag I + log( fag /2  - agla  - ag]) in a wide range of [a - ag I. 

The simulated values of cycle rank show a good agreement with the exact values 
for an infinite system for N >~ 106. The simulation behaviour is similar to that  of wg. 
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Conclus ions  

The Monte-Carlo simulation of network growth described here gives a reasonable approx- 
imation for values expected for infinite systems for numbers of monomeric units N = 106 
- 107; for the sol fraction, even N = 105 is still reasonable. The best method for de- 
termination of the gel point conversion is the extrapolation of the gel fraction to zero. 
The weight-average degrees of polymerization are more sensitive to N and fluctuations 
of computer experiments. A method for location of the critical point suggested in the 
literature [4] is based on the assumption of the same critical exponents of Pw and Pw,sol. 
The method consists in the log - log plot of these quantities against [a - %1 and shifting 
ag, so that the slopes are equal. We consider this method less reliable because: (a) the 
assumption of symmetry has not been generally proved, (b) the exponents (slopes) depend 
more on N and conversion range than wg. 

In increasing the reliability of the prediction, the increase in system size and increas- 
ing number of computer experiments at the same size are competitive. Figure 8 shows 
the dependence of computer CPU time in dependence on N and may serve as a guideline 
for selection. The increasein N by a factor of 10 corresponds to an increase in CPU time 
by a factor of 25. This means that, for instance, 10 experiments each with N units are 
less time-consuming than one experiment with 10N units. 

The application and testing of this Monte-Carlo simulation is by far not limited 
by this simple case. As will be reported later, it works also well with complex reactions 
involving a number of elementary reaction steps like free-radical crosslinking copolymer- 
ization. 

Acknowledgemen t .  Partial supports of this work by the Grant Agency of the Academy 
of Sciences of the Czech Republic (Grant No. 45054) and by US-Czech Science and 
Technology Program (Grant No. 92034) are gratefully acknowledged. 

References  

[1] ~omvs J and Du~ek K (1994) Polym. Bull., preceding paper 

[2] Du~ek K (1986) Adv. Polym. Sci 78 :1  

[3] Du~ek K (1989) Formation and structure of networks from telechelic polymers: Theory 
and applications to polyurethanes. In: Goethals E (ed) Telechelic Polymers: Synthesis, 
Structure and Applications. CRC Press, Boca Raton, pp 289-361 

[4] Aharony A (1980) Phys. Rev. B22:400 

[5] Stauffer D, Coniglio A and Adam M (1981) in Polymer Networks, Du~ek K, Editor, 
Adv. Polym. Sc{., 44:103 

Accepted June ii, 1994 St 


